
A JAVA UNIVERSAL VEHICLE ROUTER 
IN SUPPORT OF ROUTING UNMANNED 

AERIAL VEHICLES 

Robert W. Harder, 2nd Lieutenant, USAF 

AFIT/GOR/ENS/00M-16 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

3533©^ 20000613 102 



REPORT DOCUMENTATION PAGE Form Approved 
OMBNo. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 

March 2000 

3.  REPORT TYPE AND DATES COVERED 

Master's Thesis 
4.  TITLE AND SUBTITLE 

A JAVA UNIVERSAL VEHICLE ROUTER IN SUPPORT OF ROUTING 
UNMANNED AERIAL VEHICLES 

6.  AUTHOR(S) 

Robert W. Harder, 2Lt, USAF 

5.  FUNDING NUMBERS 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institute of Technology 
2750 P Street 
Wright-Patterson AFB, OH 45433-7765 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GOR/ENS/OOM-16 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Mark O'Hair, Lt Col, USAF 
UAV Battlelab 
1003 Nomad Way, Suite 107 
Eglin AFB, FL 32542-6867 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

mark.ohair@eglin.af.mil 
Comm: (850) 882-5940 x208 
DSN: 872-5940 x208 

11. SUPPLEMENTARY NOTES 

Advisor: Maj Ray Hill, AFIT/ENS, 
Comm: 937-255-6565 x4327, DSN: 785-6565 x4327 
ray.hill@afit.af.mil 
12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Max/mum 200 words) 

Unmanned Aerial Vehicles (UAVs) help the military gather information in times of peace and war. During a mission, 
typically 100 sites or more, a UAV will frequently be re-tasked to visit a pop-up threat, leaving the operator to determine the 
best way to finish the day's list of sites after the re-tasking. I develop a prototype application to serve the needs of a specific 
customer, the 11th Reconnaissance Squadron, by helping them preplan missions and dynamically re-task UAVs. This 
prototype application is built on a reusable airframe router called the core AFIT Router, which can later be added to more 
sophisticated mapping and planning software for other customers. The core AFIT Router is built on a new architecture, 
defined and implemented in this research, which calls for tools that solve entire classes of problems. To support the UAV 
routing problem, I develop such an architecture for Vehicle Routing Problems (VRPs) and Traveling Salesman Problems 
(TSPs) and call it the Universal Vehicle Router (UVR). The UVR allows for many solving techniques to be plugged in, and 
two sample solvers are included, one a tour-building heuristic by Gary Kinney and the other an adaptive tabu search 
developed in this research. 

14. SUBJECT TERMS 

Vehicle Routing, Unmanned Aerial Vehicles, UAV, Java, architecture, tabu search 
15. NUMBER OF PAGES 

73 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



The views expressed in this thesis are those of the author and do not 
reflect the official policy or position of the United States Air Force, 

Department of Defense, or the US Government. 



AFIT/GOR/ENS/00M-16 

A JAVA UNIVERSAL VEHICLE ROUTER 

IN SUPPORT OF ROUTING UNMANNED 

AERIAL VEHICLES 

THESIS 

Presented to the Faculty of the Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Operations Research 

Robert W. Harder, B.S. 

2nd Lieutenant, USAF 

March 2000 

Approved for public release; distribution unlimited 



AFIT/GOR/ENS/OOM-16 

A JAVA UNIVERSAL VEHICLE ROUTER 

IN SUPPORT OF ROUTING UNMANNED 

AERIAL VEHICLES 

Robert W. Harder, B.S. 

2nd Lieutenant, USAF 

Approved: 

iyHill, Major, USAF Ray 
Advisor 

Dr. James Moore 
Reader 

Date 

fsfe~—^Mi£jA 31 E,£oö 

^/,7/M^     21F^OO 



Acknowledgements 

Thank you to my loving wife Gabrielle for whom this 18 month stint at AFIT was 

her honeymoon. I'll give you a real one, honey. She encouraged me and cared for me while I 

tarried away. Thank you to my friends at Fairhaven Church who encouraged me in growing 

spiritually as well as academically. Thank you to those at AFIT who befriended me and 

shared my joys and trials. Thank you to Tony and Beth Snodgrass for the holiday meals. 

Thank you to Chris Cullenbine who helped debug my tabu search software and Shay 

Capehart who always helped me think through my philosophical questions. 

Thank you to my thesis advisors, Maj. Ray Hill and Dr. James Moore, as well as my 

original advisor Dr. Glenn Bailey who retired on me. Thank you to my thesis sponsor Lt. 

Col. Mark O'Hair who encouraged us, funded us, and sent us to Europe. Thank you to my 

colleague Capt. Gary Kinney for showing me where to eat in Germany and to our contact at 

the CAOC Lt. Col. Raplh Park for showing us where to eat in Italy. 

in 



Table of Contents 

Acknowledgements iii 

Table of Contents iv 

List of Figures vi 

List of Tables vii 

Abstract viii 

Chapter One: Introduction 1 
Setting 1 
Purpose 2 
Existing Software 4 
Conclusion 6 

Chapter Two: Literature Review 7 
Tabu Search 7 
Advances in Tabu Search 8 

Reactive Tabu Search 9 
Hashing Techniques 10 
Elite List 11 
Jump Search 11 

The Traveling Salesman Problem (TSP) 12 
l-TSP 14 
Multiple-TSP 14 
mTSP-Time Windows 16 

The Vehicle Routing Problem (VRP) 17 
Simple VRP 17 
VRP-Time Windows 18 
Heterogeneous Vehicles VRP(TW) 19 
Multiple Depot (Het)VRP(TW) 21 
Other VRP Issues 21 

Summary 22 

Chapter Three: An Architecture for Optimization Applications 23 
Introduction 23 
Proposed Architecture 24 
Instance of Architecture for VRPs and TSPs 25 

Prototype Application 26 
Core AFIT Router 31 
Universal Vehicle Router 36 
Solver Interface 39 
Sample Adaptive Tabu Search Solver 40 
General Tabu Search 41 

Conclusion 45 

iv 



Chapter Four: Empirical Analysis 46 
Introduction 46 
Selecting a Tabu List Style in the UVR's Included Tabu Search 46 
Setting the Parameters in the UVR's Included Tabu Search 47 
The Universal Vehicle Router, Sample Tabu Search, and Solomon Data Sets 50 
Conclusion " 

Chapter Five: Conclusion 54 

Specific Contributions 54 
Recommendations for Future Work 55 

Bibliography 56 

Additional References 60 



T.ist of Figures 

Figure 1: Predator UAV in the air 2 

Figure 2: AFIT Router layers 4 

Figure 3: Sample screen shot of O'Rourke and Flood's software 5 

Figure 4: Example of a forward insertion move 14 

Figure 5: The situation facing an analyst 23 

Figure 6: Architecture for the general operations research software 24 

Figure 7: Architecture for Vehicle Routing and Traveling Salesman class of problems.. 26 

Figure 8: Screenshot of main prototype AFTT Router panel (MacOS) 27 

Figure 9: Screenshot of sites screen (Solaris/CDE) 28 

Figure 10: Screenshot of vehicles and bases screen (Linux/KDE) 29 

Figure 11: Solve dialog for prototype AFIT Router (MacOS) 29 

Figure 12: Screenshot of multiple solutions screen (Windows) 30 

Figure 13: Screenshot of single solution screen (Solaris/OpenWindows) 31 

Figure 14: AFTT Router Core Kernel as a point of contact 32 

Figure 15: Distance and heading geometry on a spherical triangle • 34 

Figure 16: Headwind and tailwind ground speed adjustment 36 

Figure 17: Representation of a solution in the UVR 38 

Figure 18: Steps for the adaptive tabu search 40 

Figure 19: General cycle of a tabu search 42 

Figure 20: General tabu search engine 43 

Figure 21: Visual summary of parameter settings tests 49 

Figure 22: Comparing UVR with tabu search and best known Solomon solutions 51 

VI 



List of Tables 

Table 1: Information tracked by the core AFIT Router kernel 33 

Table 2: Information and control requested by the UVR of higher level software 37 

Table 3: Comparing performances of two tabu list styles 47 

Table 4: Parameter settings for adaptive tabu search 48 

Table 5: Performance of UVR against best known solutions 51 

vn 



AFIT/GOR/ENS/OOM-16 

Abstract 

Unmanned Aerial Vehicles (UAVs) help the military gather information in times of 

peace and war. During a mission, typically 100 sites or more, a UAV will frequently be re- 

tasked to visit a pop-up threat, leaving the operator to determine the best way to finish the 

day's list of sites after the re-tasking. I develop a prototype application to serve the needs of 

a specific customer, the 11th Reconnaissance Squadron, by helping them preplan missions 

and dynamically re-task UAVs. This prototype application is built on a reusable airframe 

router called the core AFIT Routerwhich can later be added to more sophisticated 

mapping and planning software for other customers. The core AFIT Router is built on a 

new architecture, defined and implemented in this research, which calls for tools that solve 

entire classes of problems. To support the UAV routing problem, I develop such an 

architecture for Vehicle Routing Problems (VRPs) and Traveling Salesman Problems (TSPs) 

and call it the Universal Vehicle Route^JVR). The UVR allows for many solving 

techniques to be plugged in, and two sample solversare included, one a tour-building 

heuristic by Gary Kinney and the other an adaptive tabu search developed in this research. 

vm 



A JAVA UNIVERSAL VEHICLE ROUTER 

IN SUPPORT OF ROUTING UNMANNED 

AERIAL VEHICLES 

Chapter One: Introduction 

Setting- 

Unmanned Aerial Vehicles (UAVs) serve America's military forces by flying in 

dangerous areas in primarily surveillance missions. Because they are unmanned, UAVs have 

endurance times that far exceed any mission normally flown by manned aircraft. Long 

endurance times mean a UAV may visit many targets, or sites, during a mission. Due to 

myriad planning considerations, finding a good path among the sites that the UAV must visit 

is a daunting task. UAV operators have software to help plan a mission for each UAV, but 

the tools lack a way to suggest a sequence in which to visit these sites. A good sequence or 

route is one that dramatically reduces mission times and exposure to threats while satisfying 

the critical needs placed on the overall mission. 

The Predator UAV, in use by both the US Air Force and US Army, can stay aloft for 

more than 24 hours while cruising at 70 knots at altitudes up to 25,000 feet. With a variety of 

intelligence-gathering payloads, the Predator transmits high resolution video and synthetic 

aperture radar images via a satellite link or line of sight communications. This information is 

useful for preplanning missions, executing missions, and assessing batde damage. Figure 1 

shows a Predator in flight. 



Figure 1: Predator UAV in the air 

In wartime scenarios, UAVs may be responsible for imaging hundreds of sites every 

day. Although a list of sites to visit is available at the beginning of the day, past conflicts have 

shown that a hundred or more targets may interrupt that list throughout the day, requiring 

quick-turn re-tasking of intelligence assets. The daunting task of re-routing a UAV to 

accommodate these pop-up targets that interrupt the pre-determined target list falls squarely 

on the shoulders of the UAV operators. Existing mission planning tools provide little 

support in the re-routing efforts of the UAV operators. 

Purpose 

This thesis presents an architecture for and prototype application of a routing tool to 

help UAV operators reduce mission times in both the preplanning and real-time re-tasking 

phases. All code, to include the sample search algorithm within the router, was coded in Java 



and designed to work with the existing mission planning tools in use by UAV operators. The 

algorithm extends O'Rourke's (1999) work and adds new UAV considerations—site 

priorities and restricted geographic operating zones—and new tabu search techniques, some 

found in the literature and some developed in this research. 

The architecture and prototype application is built around a Universal Vehicle 

Router (UVR) specified and developed in this research. Figure 2 suggests how the various 

components in the architecture work together in layers to form the AFIT Router, used for 

the specific UAV routing problem. The UVR supervises the solving (generating and 

improving routes) by exploiting modern object oriented techniques to interface to add-in 

Vehicle Routing Problem (VRP) solvers. In general this approach looks not to include a 

specific set of features but instead seeks not to prohibit both common and obscure features. 

For example, in a general routing application, accounting for multiple operating locations, or 

depots, can get complicated with traditional approaches. However, within the VRP solver 

paradigm, each vehicle dictates its own starting position and so could have its own depot. An 

application, such as the UAV algorithm in this research, does not need to know about 

routing algorithms when using the UVR. It simply describes its components in terms of 

performance and capabilities. 



ART Router (UAVs) 

Knowledge: 
Vehicle specifications 
Geography 
Wind effects 
Imaging Types 

Universal Vehicle 
Router (UVR) Add-in Solvers 

Knowledge: 
TSPs/VRPs 
Service orders 
Reduce travel 
Order specifications 

Figure 2: AFIT Router layers 

Knowledge: 
Tabu search (included) 
Genetic algorithms 
Simulated annealing 

This thesis effort is part of a larger effort sponsored by the UAV Battlelab directly 

supporting the 11th Reconnaissance Squadron. This research defined and built an 

architecture for routing problems and used the architecture to prototype the ^LFZT Router, a 

UAV routing tool. Kinney (2000) developed and empirically tested solution heuristics 

incorporated in the Universal Vehicle Router. External to these research efforts were efforts 

to interface the prototype AFIT Router application with the existing DEMPC software (see 

below) and train the 11th Reconnaissance Squadron personnel on the use of the AFIT 

Router. 

Existing Software 

UAV Battlelab-sponsored research by O'Rourke (1999) extended previous work 

(Ryan 1998 and Carl ton 1995a) and included software (Flood 1999) that provided a graphical 

user interface (GUI) to tie maps and targets to routes. This.software, called Auto-Router, 

uses a tabu search meta-heuristic to find good, possibly-optimal, routes for UAVs. Figure 3 



shows a sample Screenshot of this Auto-Router software. In Figure 3, triangles represent 

targets visited along the UAV route represented by the connected directed arcs. The single 

operating location (depot) is at the upper left corner represented by the 11th Reconnaissance 

Squadron patch. 

Rg* Automute Application EHE! 

Figure 3: Sample screen shot of O'Rourke and Flood's software 

This software was a good first step in combining routing software with a usable 

Graphical User Interface (GUI), but with a limited interface, the Auto-Router best served as 

a proof of concept for future work. 

A mission planning tool called DEMPC (Data Exploitation and Mission Planning 

Console) was developed by Boeing for the Predator UAV Operators. DEMPC allows 



Operators to both preprogram a mission and follow an ongoing mission. The DEMPC has 

its own useful GUI. Since the DEMPC has this GUI, our prototype application does not 

need any map overlay features like O'Rourke and Flood's Auto-Router. The DEMPC has 

tools that help the operators with how the Predator is to fly: waypoint-to-waypoint, wings 

level, record imagery, stay in assigned air space, avoid threats, and avoid terrain. The 

DEMPC does not address why the Predator flies where it does. There is no auto- routing 

feature to help the operators know why they should fly a particular route. 

When a UAV is re-tasked to visit a new site, the UAV operators must replan the 

mission manually. Sometimes after visiting a new site, returning to where they left the 

planned route is sufficient, but that detour could add enough extra travel time to adversely 

affect the rest of the mission. If the UAV operators could generate a new plan while on their 

way to a new site, they might not have to skip sites for fear of running out of fuel or missing 

time over target requirements (referred to as time windows). 

Conclusion 

This thesis presents the specification and design of a flexible architecture built 

around a Universal Vehicle Router (UVR) for solving Vehicle Routing Problems. The UVR 

was applied to the UAV routing problem in support of the 11* Reconnaissance Squadron 

and applied to the academic problems contained in the Solomon data sets for testing. 



Chapter Two: Literature Review 

The Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) are 

members of a general class of problems where one or more vehicles visit customers and may 

or may not deliver some product along the way. Often there are extra considerations such as 

visiting a particular customer within a certain time window or specifying that certain 

customers must be visited before or after other customers. 

There are a variety of techniques to solve these problems but none have been as 

effective overall as tabu search (Laporte 1992). A survey of these problems, starting with the 

simplest Traveling Salesman Problem and working up to complex Vehicle Routing 

Problems, follows an overview of tabu search. 

Tabu Search 

Tabu search is a technique developed by Glover (1986) that intelligently searches the 

solution space of a complex problem. It works on the principle that the use of memory can 

help a search avoid getting trapped in local optima and can help it look more closely at 

optima that may be sensitive to small changes. Tabu search explores the solution space in 

small steps and typically halts arbitrarily after some number of iterations, typically 1,000 to 

5,000. The tabu search process is defined by an operation called a move. A move is an 

operation on a solution that changes that solution. That changed solution is called the 

neighbor of the current solution since the changed solution is only one move away from the 

current solution. A move can be as simple as toggling a binary variable on or off or swapping 



two items in a sequence. In each iteration the tabu search evaluates all, or some portion of, 

neighboring solutions. All such neighboring solutions comprise the neighborhood ofthe 

current solution. The tabu search picks the neighbor with the best objective function value, 

and that neighbor becomes the current solution for the next iteration. 

As moves are executed, their particular attributes are registered on a tabu list, 

remaining there for a specified number of iterations, the tabu tenure. The tabu list size and the 

tabu tenure are closely related and vary based on problem specifics. While tabu, the move 

cannot be chosen unless the tabu restriction is overridden by some useful goal, called an 

aspiration criterion. One common aspiration criteria is achieving the best known solution. The 

basic purpose of the tabu list is to avoid revisiting previous solutions and force the search 

into unexplored areas of the search space.   Altering the size of the tabu list helps control 

search features. 

Common enhancements to tabu search include intensification and diversification. The 

tabu search uses these features to look more closely at a particular solution (intensification) 

or to move to a different part of the solution space (diversification). A long tabu list can 

force the search to visit new locations (diversification) while a short tabu list can force the 

search to spend more time around the current solution (intensification). 

Advances in Tabu Search 

Tabu search (TS) has been applied to more than just TSPs and VRPs, and for those 

problems where TS may not seem to be a first choice, it can be a meta-heuristic, guiding 

other search techniques. A discussion of several aspects of TS follows. 



Reactive Tabu Search 

There are several parameters used to specify a particular tabu search. For example: 

tabu list length and neighborhood size. Properly setting these parameters can dramatically 

improve tabu search performance. A tabu search that tunes these parameters as it searches 

the solution space is called a reactive (or adaptive) tabu search. Battiti (1996) points out a 

drawback to tuning these parameters prior to the search process: you need either a lot of 

prior experience and knowledge about the problem or you need to do a lot of trial and error 

to find the parameter settings. He further points out that a "crucial issue" in heuristics is 

finding the balance between a detailed search in a local optimum and diversifying the search 

to include other portions of the solution space. Indeed there may be no optimal parameter 

settings to satisfy this balance. Thus a self-tuning tabu search may be necessary to both 

explore and escape local optima. 

Making the tabu list tenure {i.e., how long a move remains tabu) reactive is a 

common and very effective way to increase the quality of a tabu search. Battiti (1996) 

defines a hamming distance as a way to measure how far away one solution is from another. 

By tying the tabu list tenure to this hamming distance, Battiti intensifies and diversifies the 

search as needed. Battiti suggests using the following function, where T= 1 (Tis an attribute 

of the tabu list length) at the beginning and L is defined as the size of the neighborhood, to 

change the tabu list tenure (T-REACT) when a local optima is repeated. 

T-REACT(T) = min{ max{ Tx 1.1, T+ 1 }, L-2 } (1) 

The upper bound of L - 2 ensures that the tabu search will always make a decision 

based on the objective function and never just default to a new solution. Similar schemes for 



modifying the tabu list tenure have proved successful (Toulouse etal. 1998 and Talbi eta/. 

1998) including O'Rourke's (1999) tabu search in the Auto-Router software. 

Hashing Techniques 

Original tabu search methods determine tabu moves by some attribute of the move 

such as a binary variable i being toggled on or off. Woodruff and Zemel (1993) suggest using 

a hashing function to characterize the entire solution and place that characterization on the 

tabu list, thus making previously visited solutions tabu. This tabu list is less restrictive and 

thus needs a longer tenure to match the characteristics of a traditional tabu list. Woodruff 

and Zemel (1993) state three goals for a hashing function: computation should be easy, 

storage and comparison efforts should be reasonable, and probability of collision should be 

low. A collision occurs when two dissimilar solutions yield the same hash value and thus 

appear to be the same solution. 

A hashing function generates an integer in some predefined range mapping a larger 

domain to a smaller domain. The size of this predefined range directly affects the probability 

of a collision, and smaller ranges have a higher chance of collisions (imagine trying to map 

basketball scores to a number between 1 and 10). It might appear that the probability of a 

collision is the inverse of the maximum range (1/MAXRANGE), but Carlton and Barnes 

(1996) point out that this is an overly optimistic estimate of collision rates. Recalling the 

birthday problem, they note that there is a better than 50-50 chance of two people in a room 

of 25 having the same birthday, not the 1/365 = .00274 chance one might expect. Extending 

this principle to the hashing problem, they show that with a two-byte number (up to 65,535) 

there is an 85% chance of a collision after just 500 iterations when all solutions are hashed 

and recorded. 

10 



Woodruff and Zemel (1993) present two hashing functions that use pre-computed 

vectors or matrices of random integers, % and where x,is some value for element /in the 

solution. The first 

/=/ 

uses as many random integers as there are decision variables. The second creates an n X n 

matrix, Z, of random integers and a hash value based on 

A2=2zfo,*w) .    (3) 
i=l 

The second hash function provides a lower probability of collision at the expense of taking 

up more memory with its n X n matrix. 

Elite List 

As it continues its iterations, a tabu search may save good solutions that meet certain 

criteria This list of good solutions is called an elite list, and the tabu search may go back to 

these solutions and perform a more intense search in that part of the solution space. 

Although the tabu search may spend a lot of time building the initial elite list, the focused 

intensification it later performs often outweighs the effort expended. 

Jump Search 

Many good tabu searches build an elite list of good solutions and then revisit these 

solutions with various intensification or path-relinking techniques. Tsubakitani and Evans 

(1998a) coined a technique catted jump search where solution-construction heuristics 

11 



effectively give the tabu search an elite list at the first iteration. Having an elite list from the 

start saves valuable tabu search iterations. The Universal Vehicle Router in this thesis uses 

jump search solution-construction techniques developed by Kinney (2000). 

The Traveling Salesman Problem (TSP) 

The Traveling Salesman Problem (TSP) presents a case where a number of 

customers must be visited exactly once by one or more salesmen or vehicles. The simplest 

TSP with one vehicle can be represented as follows. Let nc be the number of customers. Let 

xr equal 1 if customer/' is immediately preceded by / and zero otherwise. Let c~ be the cost of 

traveling from customer i to customer/ Let t-- be the time it takes to travel from /' toy. Let Sj 

be the service time aty". Let R be the limiting range in time of the vehicle. Although the 

limiting range R is not technically included in the simplest possible TSP, it is included here, 

skipping the more trivial case when the vehicle's route could go on forever.. 

minZ = ££x,yciy (4) 
i=0 y=l 

{Minimize total cost—usually travel time} 

subject to 

|>,y=; \fj = l..nc (5) 

{Arrive at each customer once} 

12 



£*„=; v/=ö..«c (6) 

{Leave each customer once} 

,=0 7=1 (=0 y=l 

{Range of vehicle} 

*v e *tf } 

I=0.JIC,  ;=7..nc (8) 

{Domain} 

££x,<nc-7 (9) 
.=/ j=i 

{Subtour-breaking constraints} 

Calrton (1995) presents a very effective method for the TSP that avoids some of the 

difficulties associated with the previous notation. It involves listing all vehicles and 

customers in a vector where solution states can be changed by removing an item and 

inserting it before or after its current position. Figure 4 shows an example of what the vector 

might look like as well as some possible moves for customer number two. The move shown 

is called a forward insertion move. 

13 
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Vehicle Nodes 

Customer Nodes 

Figure 4: Example of a forward insertion move 

1-TSP 

The simplest case of a TSP involves one vehicle that must visit each customer. 

Because this is the simplest case, it is a good test platform for experimental techniques that 

may prove useful in more complicated problems. Since tabu list tenure gready influences the 

success of a TSP solved by tabu search, Tsubakitani and Evans (1998b) use a 1-TSP with a 

symmetric cost matrix to find a good tabu list tenure based on the number of customers in 

the problem. They suggest a tenure between tie/16 and nc/A depending on the complexity of 

the moves used in the tabu search. Gendreau et al. (1992) develop an insertion and post- 

optimization technique called GENIUS (Generalized Insertion and Unstringing/Stringing) 

that can help heuristics solve TSPs. The insertion technique (GENI) can be used in more 

complicated problems. The post-optimization technique (US) can be modified for more 

complex problems. 

Multiple-TSP 

With Multiple-TSP (mTSP) problems, there is more than one vehicle capable of 

visiting the customers. This requires a slight modification to the decision variable x. Let v 

14 



index nv vehicles and let X-j equal one if vehicle *>goes from /'toy and zero otherwise. The 

objective is 

nv    nc    nc 

minZ-SEZ^ (10) 
v=l  1=0 j=\ 

{Minimize total cost} 

and the rest of (5) through (9) becomes 

EX4=;  Vy = i..nc (11) 
v=/ 1=0 

{Arrive at each customer once} 

nv    nc 

££^=7  Vi = 0..nc (12) 
v=; j=i 

{Leave each customer once} 

nc    nc nc    nc 

1=0 7=1 1=0 j=\ 

{Range of vehicle} 

i = 0..nc,   j = l..nc,  v = l..nv (14) 

{Domain} 

nc    nc 

£^x,;<nc-7  Vv = /..nv (15) 
.=/ ;=/ 

{Subtour-breaking constraints} 

15 



mTSP-Time Windows 

The mTSPJ with Time Windows (mTSFTW) adds the restriction that customers must 

be visited within a certain time frame. Generally, the vehicle may arrive early but must then 
I 

wait until the beginning of the time window. Let e, be the earliest arrival time, lt be the latest 

arrival time, and s{ be the service time for customer i. Let ts be the travel time between 
t 

customers /' and/ Let At and T, be the time a vehicle arrives at customer / and the time it 
i 

begins servicing customer;', respectively. Let W{ be the time spent waiting for service to 

i 
, To account for time windows, the following two equations are 

above. 

begin at customer i. 

appended after (15) 

ifxl=lthenTi+si+tij+Wj<Tj 

{Time precedence} 

e, <7] </,.   Vi = l..nc 

{Time windows} 

(16) 

(17) 

and the vehicle range constraint (13) is rewritten as 

lj=0 7=1 i=0 j=\ 1=0 y=l 

{Range of vehicle} 

(18) 
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The Vehicle Routing Problem (VRP) 

The vehicle routing problem adds vehicle capacities and customer demands to the 

traveling salesman problem. The literature is rich on VRPs since VRPs closely resemble the 

majority of problems in the real world. A progression from simple to complex VRPs 

follows. 

Simple VRP 

In a VRP, one or more vehicles deliver products to customers. Nearly all VRPs 

assume multiple vehicles, so the M is commonly dropped from MVRP. Just as the 1-TSP is 

useful for experimental TSP techniques, the single VRP is used to test new VRP techniques. 

Gendreau eta/. (1994) develop a heuristic called TABUROUTE that works within a tabu 

search and allows infeasible solutions during the search. This heuristic performs well and 

outperforms many of the top performing heuristics. Gendreau eta/. (1996) extend 

TABUROUTE to solve VRPs with stochastic demands and customers to test the robustness 

of a heuristic. Traditional VRPs assume only one kind of product or service is supplied by all 

vehicles. 

To account for the vehicles' capacities to deliver products, let dt be the demand of 

customer / and D be the capacity of each of the vehicles. This assumes the vehicles are 

identical, or homogeneous. Letting V be the set of customers visited by vehicle v. The 

objective is 

nv    nc    nc 

minZ = XEE^c.y (19) 
y=I  1=0 y=l 

{Minimize total cost} 
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subject to 

22*l=*  Vj = l..nc (20) 
v=l i=0 

{Arrive at each customer once} 

nv    nc 

££^=i Vi = 0..nc (21) 
v=y j-i 

{Leave each customer once} 

nc    nc nc    nc 

TL*?v +2l*?J*R  Vv = l..nv (22) 
i=0 y=l i=0 j=\ 

{Range of vehicle} 

4 e {0,i} 

/ = CLnc,  j = l..nc,  v = I.JIV (23) 

{Domain} 

£ £ xjj < nc - 7  V v = l..nv (24) 
,=/ 7=/ 

{Subtour-breaking constraints} 

^dt<D  Vv = l..nv (25) 
isV" 

{Demand and capacity} 

VRP-Time Windows 

Reflecting real-world concerns, many people require that some customers be visited 

within a certain time window. Desrochers et al. (1992) use a column generation technique to 

solve 100 customer problems to optimality while determining the ideal number of vehicles to 
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have in the fleet. Garcia eta/. (1994) use a parallel tabu search to explore large regions of the 

solution space, resulting in good solutions very quickly. Formulating time windows in a VRP 

is similar to formulating time windows in a TSP. The following equations are appended after 

(25). 

if 4 = 1 then Ti + st + ttj + Wj < Tj (26) 

{Time precedence} 

e, <!;.</,.   VI = 7.TIC (27) 

{Time windows} 

and the vehicle range constraint (22) is rewritten as 

XX^+XX'^+XX*^* Vv = 1^v (28) 
1=0 y=l 1=0 j=\ i'=0 j=l 

{Range of vehicle} 

Heterogeneous Vehicles VRP(TW) 

Heterogeneous vehicles do not share the same capacity or range, though they 

typically still carry only one type of service or product. Gendreau et al. (1999) adapt the 

GENIUS heuristics to account for different capacities and ranges and experiment with 

several parameters to suggest a robust set of values. In their tests on smaller problems (fewer 

than 75 customers), other techniques outperform GENIUS, but on larger problems, 

GENIUS produces the best results. To account for heterogeneous vehicles, many of the 

variables need to be indexed by the vehicle v. c~ becomes cv
tj, Sj becomes sVj, R becomes R, 

and D becomes D". The objective is: 
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nv    nc    nc 

"i" Z = IZI*^ (29) 

subject to 

v=l i=l y=i 

{Minimize total cost} 

nv     fn 

££^=7 V; = i.Jic (30) 
v=/ 1=0 

{Arrive at each customer once} 

££*,;=; V/=O.JIC pi) 
v=/ j=l 

{Leave each customer once} 

fit «t Mt Mt '»t "t 

xz^+zx^+zz^^ Vv=^""v       C32) 
,=0 j=l i=0 j=l 1=0 y'=7 

{Range of vehicles} 

i = 0..nc,  j = l..nc,  v = l..nv (33) 

{Domain} 

££4<nc-7  Vv = /..nv (34) 
;=/ y=/ 

7'*' 

{Subtour-breaking constraints} 

£</,. <DV   Vv = 7../iv (35) 
ieV" 

{Demand and capacity} 

ifx;=l then Ti+s] +t; + W, <Tj (36) 

{Time precedence} 
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e, <T; </,.   Vi = l..nc 

{Time windows} 

(37) 

Multiple Depot (Het)VRP(TW) 

Stationing vehicles at different depots requires a closer look at which vehicles are 

assigned to service which customers. Renaud eta/. (1996) present a tabu search algorithm 

called FIND—Fast improvement, Intensification, and Diversification. The three phases in 

the FIND algorithm address the three key stages in tabu search. Published results suggest 

FIND outperforms existing algorithms on benchmark tests. An effort by Laporte et al. 

(1988) uses graph transformations with a modified branch and bound procedure to 

VRPs. One way to account for multiple depots extends the 

. For example, the unique cost matrix cjj would differ from 

successfully solve multiple depot 

notion of heterogeneous vehicles 

another cv not only because of vehicle performance but because of depot location. 

Other VRP Issues 

VRPs can grow in complexity to reflect real-world concerns until the formulation 

becomes almost too unwieldy. Several efforts have expanded VRPs to include these real- 

(1997) address the possibility that a vehicle may be reused 

the possibility of threat circles and no fly zones for 

Unmanned Aerial Vehicles (UAV). O'Rourke (1999) considers wind speeds and directions at 

different altitudes for UAVs. Laporte eta/. (1988) determines where multiple depots should 

be located and assigns vehicles to' customers. 

world complexities. Golden et al. 

during the day. Ryan (1998) adds 
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Summary 

Many people have solved the TSP, VRP and their variants. This chapter surveyed 

the TSP and VRP problems and their various extensions. These problem extensions have 

pushed problem complexity (and thus problem size) closer to real-world problem 

complexity. As these mathematical problems get more complicated, encompassing more of 

the real-world aspects, traditional solution techniques become harder to apply. In fact some 

formulations get to be so complex that being able to implement and represent them is as 

difficult a task as solving them. Thus, real-world problems require real-world structures, and 

object-oriented techniques can provide those real-world structures. An architecture for 

optimization applications designed and realized in this research offers such a real-world 

structure. 
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Chapter Three: An Architecture for Optimization Applications 

Introduction 

As problems grow in complexity, and the time available to obtain solutions 

diminishes, analysts need flexible tools that solve classes of problems (vehicle routing, 

assignment, scheduling) versus just techniques (linear programming, integer programming, 

heuristic libraries). Creating such flexible tools requires an understanding of the situations 

facing analysts. Figure 5 depicts the situation. 

Problem Classes 
'vehicle routing, scheduling. etcN 

Techniques 
linear programming, tabu search, etc 

Figure 5: The situation facing an analyst 

At the top level are the messes which managers and leaders must deal with regularly 

and for which models are built to provide insight (Ackoff 1979). An analyst examines and 

frames the mess as a particular class of problem, such as vehicle routing or scheduling 

problem. Once the problem is classified, a set of techniques are available. The analyst then 

chooses a technique best suited for the problem at hand. 
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One of two difficulties often arise once the technique is selected: 1) software 

implementing the technique must be written from scratch or 2) existing software requires 

analysts to translate their problem directly from some other solution formulation or data. 

The modern analyst needs to be able to plug into reusable, general purpose techniques. 

Reusable techniques mean analysts only develop those components particular to their 

problem. Such an architecture is available 

Proposed Architecture 

The analytic community needs an architecture that facilitates reuse rather than 

reinvention. Such an architecture allows one analyst to solve a problem class without 

recreating a technique, while another analyst could test a new technique on real, existing 

problems. Figure 6 proposes such an architecture. 

Messes use: 

Problem Classes: 

Techniques: 

Applications     Simulations 

Routing Scheduling 

Solver Interface 

Algorithms Heuristics Guesses 

Figure 6: Architecture for the general operations research software 

Developing software at each level requires the analyst to identify the level's common 

elements. For an example at the technique level, setting some variable xf to 1 is not common 

to tabu searches, but evaluating a neighborhood and selecting an appropriate move is. For an 

example at the problem class level, not all traveling salesman problems (TSPs) use surface 
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roads to get from A to B, but all TSPs are concerned with some kind of cost for traveling 

from A to B. Modules developed for each layer communicate via defined interfaces. Thus an 

application in capital budgeting passes information to a multi-dimensional knapsack problem 

class model which in turn passes information to an available solver which may be some 

heuristic. 

Instance of Architecture for VRPs and TSPs 

For routing and rerouting Unmanned Aerial Vehicles, we need an instance of this 

architecture that supports the vehicle routing and traveling salesman class of problems. This 

research does not need a fully functional mapping application, only a prototype application. 

Fortunately the problem class layer does not care about the specifics of these applications. 

Although the windows and buttons may change with a more polished piece of software, the 

elements of UAV routing will remain the same: multiple starting locations, wind speed, 

"Great Circle" distances across the globe, etc. Thus the UAV routing software is broken into 

a prototype application and a core component which will be identified as AFTT Router. The 

AFIT Router is from the vehicle routing class and requires a layer boldly identified as 

Universal Vehicle Router. To complete this first instance of the architecture, an example tabu 

search solver is included. The software is coded in Java for flexibility in distribution. Figure 7 

shows this specific instance of the general architecture. Each of the highlighted components 

are described next. 
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Prototype 
Application 

Mapping 
Software 

Simulations 

_A. 

Core AFIT Router 

-A 

Shipping/ 
Trucking 

Other 
VRPs/TSPs 

Universal Vehicle Router 

Solvers 

VRP Tabu Search 

General IS 

Linear 
Program 

Genetic 
Algorithm 

Etc. 

Java Virtual Machine 

Windows    MacOS    Solaris      Linux        WWW 

Figure 7: Architecture for Vehicle Routing and Traveling Salesman class of problems 

Prototype Application 

Acceptance of new software by any user community is sometimes difficult. In 

general, users want software that is easy to use and intuitive in application. They want the 

software to assist their efforts, not control them. The prototype AFIT Router software was 

designed for simplicity and practicality to encourage users to use it to solve their routing 

problems. The front panel (Figure 8) contains important summary information and allows 

quick access to more detailed information. 
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BAFIT Router! 

rSites  

Total: 
Enabled: 

|100 
94 

Sites. 

rVehicles  

Total: 4 
Enabled: 4 

Vehicles«. 

-Other  

Wind speed:   12 
Wind from: West 

Other.; 

rSolutions  
Shortest mission, length: 
Shortest mission, sites visited: 

sSolvet Moire«. 

24hrs. 18 min. 
94 

L&F 

Figure 8: Screenshot of main prototype AFIT Router panel (MacOS) 

Figure 9 shows a Screenshot of the sites window that provides access to relevant 

information about the sites that the UAVs should visit. Sites may be loaded from files or 

copied and pasted from sources such as spreadsheets. Sites are designated by a name and a 

latitude and longitude. They have a service time (in minutes) that estimates the amount of 

time spent loitering at or around the site. The priorities allow the user to determine which 

sites are preferred over other sites if not all sites can be visited. At the user's discretion, this 

could mean that a priority one site is more important than any number of priority two sites 

or that a certain number of less important sites outweighs a single high priority site. The 

requirements field allows the option of matching a particular need at a site (laser designation, 

synthetic aperture radar, etc) to a vehicle with a matching capability. Having no requirement 

specified means that any vehicle may visit the site. The time window and time wall fields 

(earliest arrival, latest departure, earliest restricted, and latest restricted) allow the option of 

specifying when a site must or must not be visited. 
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■100l 

ill 

i'r S isrsna iy.~^.*»"-*>X "-•?''; 

"Total - ' ' ' 
|. Enabled::: ■'•; ,'\'::. /'iv~> .97 j 
!:] Earliest tine windowr';?/V:- 0008hi-I 
] Latest tfrrre wfrriow:0639h+Zclays ,1 

Etabied j feNa"me~^j Latitüde.|Longitud"e|Servici:.'.|   Priority"-  Reqüire-JEarliest...l Latest"7,?!EarliestZ\ Latest"."^ 

Figure 9: Screenshot of sites screen (Solaris/CDE) 

Figure 10 shows a Screenshot of the vehicles and bases window providing access to 

relevant UAV information. A base may be specified for a UAV. The UAV defaults to 

leaving from and returning to the latitude and longitude of that base. If the UAV is in the air, 

selecting Use Alternate Location treats the UAV as leaving from the alternate latitude and 

longitude and returning to the home base. The capabilities field allows the matching of a 

site's requirement to a specific vehicle or set of vehicles. All vehicles may visit sites with no 

specified requirement. The speed (knots), range (hours), and altitude (feet) are used in 

calculating travel and endurance times. The start time field specifies when the vehicle will be 

available for takeoff, in the case of preplanning a mission, or the current time, in the case of 

real-time re-tasking. 
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büP3 Vehicles & Bases wm—m^mx 
lEnaBSB 

Ipiarne _. 
' Home Capabi... Speed ... .Rängell Altitud... SlirllS Use Al.:. i^Eat^Aftl-Lo^ : 

(2      i Predator 1 Rob AFB EO/IR,... 70 30 12,000 0814h E 23.4 10.4 

E Predator 2 Rob AFB Laser,... 70 30 11,000 0900h D 0 0 j 

;     B Hunter A Rob AFB IÖ/IR,... 65 24 11,5 00 0930h D 0 0 j 

:   0 Hunter B Rob AFB EO/IR,... 65 24 12,000 0930h D 0 0 ; 

D    ! EO/IR,... 100 0 0 D 0!             0 ; 

■-—                              ■ ■- ■" 

*wM<?t*&Z/V'% ■'• ^;sf^-lpt#l 

;|                     limhe iif!^ Latitude ;V<V; ' Longitude  ".' 

; Aviano 40.0 10.0 

! Other 32.5 29.4 

Rob AFB 0.0 0.0 

■ 0.0 0.0 

\      ■ .        ■ >   \   "*   N         *     < 

Figure 10: Screenshot of vehicles and bases screen (Linux/KDE) 

Upon clicking the solve button on the main panel, the user is presented with some 

choices (Figure 11) regarding how to treat site priorities and how much time to spend 

solving the problem. The "Use post-optimization" checkbox below the solve time slider 

allows the user to request extra optimization at the expense of a longer solve time. Checking 

this box activates the sample tabu search discussed later in this chapter. 

ß|   : ^Absolute Priorities^ri 

: !Q Use these priorities 

! PalrsWorth 
; Ita       INF 
j 2to»    INF 
! 3to a    INF 

-FlexPrioritiesf——•~r 

D Use these priorities 

PalrsWorth 
lto2       5 
2toä      S 
3toS       5 

Solve liine-^ 

Shorter'; 
4Ü 

Q Use post-optimteatiqn 

OK Cancel 

-Custom Priorities-  - 

D Use these priorities 

Pairs    Worth 

I to 2:|INF      I 

2to3:|5 I 

3 to a 10 

longer 

Figure 11: Solve dialog for prototype AFIT Router (MacOS) 
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Figure 12 and Figure 13 provide summary and detailed information, respectively, for 

solutions that have been found. A rough visual display of the solution is available as are 

details regarding estimated arrival and departure times at the sites. Solutions may be saved to 

disk, and sites may be selected and copied to the computer's clipboard directly or indirectly 

with the copy to clipboard'button which is necessary in the case of running this software as a 

world wide web applet. 

-Details^! 4M 
^itesSklppedJk^ *•>& 2 ;u 

&k"" 

Predator 1 
Predator 2 
Hunter A 
Hunter B 

Predator 1 
Predator 2 
Hunter A 

. Hunter B 

Figure 12: Screenshot of multiple solutions screen (Windows) 
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Figure 13: Screenshot of single solution screen (Solaris/OpenWindows) 

This prototype AFIT Router application should be of immediate use to the UAV 

operators who must determine a route to sites they are tasked to visit. The site list is typically 

provided in spreadsheet form, and it can be copied and pasted into this application. This 

prototype is specific to the needs of the 11th Reconnaissance Squadron but serves as a 

presentation mechanism for how it could be used for other needs. The reader might also 

note the inherent portability of the architecture as evidenced by the previous Screenshots 

taken from various computer platforms. 

Core AFIT Router 

The next layer of software is not concerned with how the data is presented to the 

user, but how the data about sites and vehicles is stored and manipulated. The core AFIT 

Router kernel (Figure 14) serves as a point of contact between the data structures and 
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application software. Not all features of the core AFIT Router kernel are used in the 

prototype AFIT Router application. Existing or future software that wishes to route UAVs 

(or other airframes) only need to know how to interact with the core AFIT Router kernel. 

Sites 

Vehicles AFIT Router 
Core Kernel Miisagaal 

Figure 14: AFIT Router Core Kernel as a point of contact 

The kernel makes available lists of vehicles, sites, winds, restricted operating zones, 

and solutions. Applications using the core AFIT Router kernel can listen for changes to 

these lists and reflect these changes by updating a table of summary information presented 

to the user. Table 1 shows the information tracked for the various components in the core 

AFIT Router. 
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Table 1: Information tracked by the core AFIT Router kernel 

Component 

Site 

Vehicle 

Wind 

Restricted Operating Zone 

Information tracked 
Name, latitude, longitude, priority, requirement, enabled 
status, service time, earliest arrival time, latest departure 
time, earliest restricted time, latest restricted time 

Name, home base, capabilities, speed, range, altitude, 
enabled status, earliest starting time, at home status, 
alternate latitude, alternate longitude 

Speed, bearing, lower altitude, upper altitude 

Name, earliest arrival time, latest departure time, earliest 
restricted time, latest restricted time, list of latitudes and 
longitudes defining its geographic region 

Restricted operating zones are not used in the prototype AFIT Router application, 

but they aid in specifying time windows and time walls for entire geographic regions. Since 

the data is pertinent to more than one potential airframe routing application, the kernel 

maintains the data. 

The core AFIT Router kernel also handles the difficult calculations for determining 

travel times between two points on a windy globe. The estimated time for traveling from one 

point to another is found by time = distance/    _ The distance calculation considers the great 

circle effect of traveling on a sphere. These calculations make the estimated times more 

accurate than a simple Pythagorean Theorem calculation. The following illustrations were 

taken from O'Rourke (1999). The calculations are from AFR 51-40, Ar Navigation 

(Departments of the Air Force and Navy 1983). 
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The distance in nautical miles between two points is given by 

d = 60 • cos-1 [sin L, • sin L^ + cos L, • cos L^ ■ cos(>l2 - A,)] (38) 

where L, and L2 are the starting and ending latitudes, respectively, and A, and X2 are the 

starting and ending longitudes, respectively. 

In order to account for the wind, a heading is needed. The intermediate angle H,y in 

degrees clockwise from true north is given by 

Hy =cos" 

sin L2 - sin L, • cos 
60 

sin 
(dA 
v60, 

COS.L, 

(39) 

This intermediate heading is used to calculate the initial true heading 0~ also 

measured in degrees clockwise from true north and given by 

\Hir sin(A2-A1)<0 
@ii~[36V-Hij,   sin(A2-A,)>0 

(40) 

Below is a graphical representation of this spherical triangle. 

(irX,) 

Figure 15: Distance and heading geometry on a spherical triangle 
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Arriving at a final ground speed GS requires several intermediate calculations. In the 

following calculations, WS represents wind speed in knots from a bearing of 0m measured 

in degrees clockwise from true north, and Ö is the difference between Qtj and ©m.   A, B, 

and C are intermediate values used to make the formulas easier to read. The ground speed 

GS is calculated by 

5=0,-0^ (41) 

A = WS-cos(lSO-S) (42) 

C = WSsin(180-<5) (43) 

B = JAS
2
-C

2 (44) 

GS = A + B = WS ■ cos(180 -<5) + VAS2 -WS2 -sin2 (180 -6) (45) 

and the final travel time is simply ttj = d{j /GS . Below is a graphical representation of these 

calculations. 
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Headwind Effect (GS < AS) Tailwind Effect (GS > AS) 

. ^vs 

GS 

©«s 

Figure 16: Headwind and tailwind ground speed adjustment 

Universal Vehicle Router 

The core AFIT Router kernel does nothing to route vehicles to sites but instead uses 

the Universal Vehicle Router (UVR). The UVR is so named because of its ability to solve a 

wide variety of VRPs and TSPs. It identifies the elements common to many VRPs and TSPs 

and defines a way for higher level software, like the core AFIT Router kernel, to interact 

with lower level software like a tabu search solver. If interested, the user can specify a solver 

from a suite of solvers. 

From the higher level software, the UVR requests information about vehicles and 

orders (UVR terminology for sites or customers). From the lower level solvers it requests 

solutions for routing vehicles to orders. Table 2 shows the information and control 
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requested of higher level software using the UVR. Priority values are assumed to be in 

ascending order where lower values mean higher priority. 

Table 2: Information and control requested by the UVR of higher level software 

Component 

Order 

Vehicle 

Information and control requested 

Earliest arrival time, latest departure time, earliest 
restricted time, latest restricted time, priority, order type, 
amount needed 

Range, earliest departure time, time to service order A, 
time to travel A to B, penalty to travel A toB, supports 
order type C, current amount available for order type C, 
remove product for order type C, replace product for 
order type C, reset products for all order types 

The UVR stores solution information in a logical way that enables every instance of a 

solution to contain information about every vehicle and order including vehicles not used 

and orders not visited. Figure 17 visually represents how the data is stored in a solution. A 

dummy tour is used to store orders that are not visited. Each tour also has a data structure as 

depicted in Figure 17. 
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Solution 
 COSIS (array of doubles) 

-Validated (boolean) 

Tour 

Tour 1 

Tour 2 

— Tour Tiv 

Dummy tour 

-Departure time (double) 

-Return time (double) 

-Travel time (double) 

-Wait time (double) 

-Penalties (double) 

-Busted time windows (integer) 

-Busted time walls (integer) 

-ETA for Order i (double) 

-ETD for Order / (double) 

-Validated (boolean) 

- Vehicle 

_ Order 1 

— Order nc 

Figure 17: Representation of a solution in the UVR 

The data stored in the tour is factual and can be calculated without assigning any 

importance to the values. The solution costs are different. They can change depending on 

how the user wishes to define a good solution. The UVR lets users define an Evaluator used 

by the solvers to determine solution quality. Evaluators may list any number of goals to 

minimize, and each goal is considered infinitely more important than the one before it. A 

typical evaluator might specify the number of exceeded vehicle ranges as the number one 

goal, the number of skipped orders as the number two goal, and the total travel time as the 

number three goal. A default evaluator minimizes the following: the number of exceeded 

vehicle ranges, the number of busted time windows, the number of skipped orders of 

priority HIGHESTJPRIORITY, the number of skipped orders of priority 

NEXT_HIGHEST_PRIORITY,..., the number of skipped orders of priority 

LOWESTJPRIORITY, travel time plus penalties, and wait time. Note that penalizing 
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certain legs of a route with values on a scale similar to the time units can discourage those 

legs. In the case of the core AFIT Router kernel, for example, legs that cross threat areas 

could be penalized more than safer legs. 

Solver Interface 

There are a variety of techniques to solve a VRP or TSP. The UVR provides an 

interface to allow different techniques to solve the same problem. Solvers receive a solution 

with all of the orders in the dummy tour (a placeholder). If they prefer, a list of good starting 

solutions may be generated using a tour-building heuristic. The solver can then access all the 

vehicle and order information discussed above, formulate the problem as it sees fit, and 

solve its problem. A solver is asked to scale its projected solve time according to an effort 

parameter (from zero to one) that is passed from the user through the UVR. 

If a solver requests a list of good starting solutions, a tour-building heuristic written 

by Kinney (2000) generates a list of starting solutions and ranks them according to the values 

returned by the Evaluator. The heuristic is based on a Solomon insertion heuristic and varies 

several parameters to generate up to 176 unique starting solutions depending on the effort 

requested and the number of duplicate solutions generated. For a more detailed discussion 

on the nature of the heuristic and its proven performance, see Kinney's thesis A Hybrid Jump 

Search and Tabu Search Metaheuristicfor the Unmanned Aerial Vehicle (UA V) Routing Problem 

(2000). The heuristic returns very good results and may itself act as a sufficient solver. One 

of the two sample solvers (the other being a tabu search) simply requests this list of starting 

solutions and immediately returns the best one. The UVR will use this solver if another is 

not specified. A user may use this solver to get a good answer very quickly. 

39 



Sample Adaptive Tabu Search Solver 

To demonstrate the feasibility of adding solvers, a sample adaptive tabu search solver 

is included with the UVR. The tabu search requests starting solutions from the tour-building 

heuristic and searches this pseudo-Elite List according to a level of effort defined by the 

user. Each starting solution is evaluated for a minimum number of iterations. The search 

continues if improvements continue and moves to the next starting solution if the search 

stalls. The entire search stops when it runs out of starting solutions or has searched a certain 

number of consecutive starting solutions without generating a new global best solution. 

Figure 18 shows the steps taken by this tabu search solver. 

Initialize: 
Set n = number of orders 

Set s = number of starting solutions 

Set effort as requested by user, e e [0,1] 

Set minimum number of iterations per starting solution, M = max{ 5, n * e / 2 } 

Set extra iterations to give solutions, E= max{5, 0.3 * m} 

Set recency of last best solution required for extra iterations to be given, 

f?=max{5, 0.3 *m} 

Set number of bad consecutive starting solutions before quitting, 

B = min{ ns, max{ 3, s * e}} 

Set tabu tenure, 7= 3 n 

Set current starting solution, c = 1 

Set starting solution yielding last global best solution, b = 0 

Steps: 
1. Set iterations left to perform, g = M 

2. Perform g iterations on starting solution c 

3. If a solution better than starting solution c has been found within R iterations, 

set g = E and go to step 2 

4. If a new global best solution has been found set b = c. 

5. If c-b>=B, quit. 

6. Set c = c + 1 

7. If c> s, quit. 

8. Go to step 2 

Figure 18: Steps for the adaptive tabu search 
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This tabu search defines four types of moves: relocate within tour, relocate to other 

tour, relocate to dummy tour, relocate from dummy tour. The first two move types insert 

orders a maximum number of places as defined by 

min{ », -1, max{ 5, 0.3 * n, } } (46) 

where n, is the number of orders in the tour at that iteration. These two move types are not 

generated at each iteration. They alternate such that one type is generated on odd-numbered 

iterations, and the other type is generated on even-numbered iterations. This reduces the size 

of the neighborhood at each iteration. The last two move types, moving orders in and out of 

the dummy tour, are generated at every iteration. Each order in a real tour is moved to the 

dummy tour, and each order in the dummy tour is moved to each location in each real tour. 

Since this tabu search builds on a list of good starting solutions, there are generally not many 

orders in the dummy tour. 

This tabu search adapts to the supplied starting solutions provided by the UVR. 

More sophisticated tabu searches written for the UVR may also benefit by following this 

model as a way to exploit the available pseudo-Elite List. 

General Tabu Search 

The sample adaptive tabu search provided with the UVR is of course specific to 

vehicle routing but was built from a more general tabu search code. This general tabu search 

package continues the layered software approach by identifying the elements common to all 

tabu searches and providing a framework on which to build specific tabu searches. It has 

already appeared in three other research efforts including a weapons assignment model 
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(Cullenbine 2000), an abstract algebra approach to the Traveling Salesman Problem (Hall 

2000), and a force allocation model (Calhoun 2000). 

The design recognizes that although specific tabu searches have their own solution 

definitions, move types, and strategies, each one generally follows the pattern shown in 

Figure 19 where a given solution is altered and evaluated before a new current solution is 

chosen. 

Current 
Solution 

Evaluate 
Neighbors 

Perform 
Moves 

Figure 19: General cycle of a tabu search 

The general tabu search package provides an engine that frees the analyst from 

writing the controlling code and allows the analyst to concentrate on defining the specifics of 

the search. Figure 20 suggests how an analyst can feed specifics into the engine and then 

listen for key events that may trigger specific strategies such as intensification, diversification, 

and strategic oscillation. 
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New Best Solution 
Listener New Current Solution 

Listener 

Unimproving Move 
Made Listener 

.and) 

Figure 20: General tabu search engine 

To create a new tabu search, an analyst would define each of the required objects 

and pass them to the Engine. The engine then performs the search as defined by the 

analyst's inputs. 

The engine makes no assumptions about the structure of an analyst's solution. The 

analyst is free to define the solution variables in any manner. The engine only asks that the 

analyst's solution be able to duplicate itself when copies of a current solution are needed. 

The objective function and penalty function evaluate a given solution however the 

analyst sees fit. The two values are added together. Thus one could evaluate the solution in 

one function and return zeroes in the other or logically divide the functions into 

contributions and penalties. The analyst may specify more than one number as the value for 

the solution in which case the list of values are compared lexicographically to determine 

which of two solutions is better. 

The move manager determines at each iteration which moves (not shown in Figure 

20) should be generated. These moves, each in turn, operate on the current solution. The 

new solution is evaluated, and the move undoes its operation. If the user specifies, the 
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engine will divide the moves up among available computer processors and evaluate the 

neighborhoods simultaneously. The best moves are then be executed for that iteration. Two 

moves may specify that their contributions to the total costs of the solution are independent 

in which case more than one move may be accepted at each iteration. If this is true the new 

solution costs are not reevaluated by the objective and penalty functions but instead are 

given by 

Costsnm = Costsoli + {CostsafUrmmi - CostsJ + (Costsaflirm0KJ- CostsJ (47) 

where the vectors Costsohb Costsaficrmmi, and Costsaflcrmmtj have already been calculated. 

When the engine considers a move, it checks with the analyst's tabu list. If the move 

is declared tabu, it is not executed unless it results in the best known solution. Moves 

selected at each iteration are registered with the tabu list. 

The listeners provide a way for the analyst to perform certain actions when events of 

interest occur. Each time a new best solution is found or unimproving move is made, for 

example, an event is triggered which the analyst could intercept and use to begin 

intensification or diversification. 

Specifications for interested developers are available in the software development kit 

available at the general tabu search package's web site 

http://www.crosswinds.net/~rharder/tabusearch/. For examples of others using this 

engine, see the theses by Cullenbine (2000), Hall (2000), and Calhoun (2000). 
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Conclusion 

A general architecture for solving specific problems based on general components is 

proposed. This architecture is realized for routing problems and the AFIT Router exploits 

this architecture. The core component of the architecture, the Universal Vehicle Router 

(UVR), allows rapid development of routing problem solution tools with the existing suite of 

two solvers and the ability to plug in new solvers in the future. 
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Chapter Four: Empirical Analysis 

Introduction 

The development of the Universal Vehicle Router (UVR), its adaptive tabu search 

solver component, and the resulting AFIT Router software required testing to ensure that 

the software performed quickly and could solve the appropriate problems. Two types of 

tabu lists were considered and tested. Additionally, certain parameters in the adaptive tabu 

search have a critical effect on performance and were examined. The UVR is a general 

purpose tool so it must be able to handle the well-known problems in VRP and TSP 

research venues. The Solomon set of standard problems was used. To solve the Solomon 

problems a simple application was designed at the same level as the core AFIT Router. Thus, 

two examples of using the UVR to solve specific Vehicle Routing Problems already exist. 

Selecting a Tabu List Style in the UVR's Included Tabu Search 

Two tabu list styles were tried and tested. One tabu list had a fixed length and 

recorded a hash value of the solution. The other tabu list was reactive, increasing and 

decreasing tenure as a function of move quality. 

Both tabu list styles were applied to all 56 of Solomon problems. The static tabu list 

based on the solution performed better more often and remained in the UVR's tabu search. 

Table 3 shows how each tabu list style performed, relative to each other. 
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Table 3: Comparing performances of two tabu list styles 

Tabu List Style Number of Vehicles 
Count      Avg Beating 

Distance 
Count      Avg Beating 

CPU Seconds 
Count       Avg Beating 

Order Attribute/ 
Reactive 

0                  0 4               10.65 16                5.1 

Solution Hash/ 
static 

0                 0 8                8.46 36                10.2 

The three values measured were the number of vehicles needed to visit all the 

customers, the total distance traveled by the vehicles, and the time in seconds that a 

computer1 took to solve the problems. The count is the number of times that one tabu list 

beat the other tabu list. The Avg Beating is the average improvement seen by one tabu list 

over the other when an improvement existed. 

Setting the Parameters in the UVR's Included Tabu Search 

In designing and testing the adaptive tabu search in the UVR, certain parameters 

demonstrated a drastic effect on solution time. These parameters were 

• the default number of iterations for each starting solution, 

• the number of consecutive bad starting solutions to allow before quitting, and 

• the maximum number of places to insert a site in a tour. 

These three parameters were set at a low and high setting and run against each of the 

problems in the Solomon data sets. All runs were made at the maximum effort level with the 

1 The computer was a 266Mhz Pentium II running Windows 98 with 128Mb of RAM. The Java Virtual 
Machine used was Sun's prerelease of Java 2 vl.3. 
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objective of minimizing the number of vehicles used and the distance traveled. Table 4 

shows the settings tested for each parameter. 

Table 4: Parameter settings for adaptive tabu search 

Parameter 
Default (minimum) iterations 

Bad consecutive starts before 

quitting 
Maximum places to insert 

Low Setting (L) High Setting (H) 

% Number of customers           Number of customers 
10% Number of starting           50% Number of starting 
solutions                                    solutions 
10% Tour length 50% Tour length  

The measured results were the time taken for the tabu search to solve the problem 

and the total distance traveled for the vehicles to visit all the customers. The visual summary 

of the results, shown in Figure 21, provides insight into the behavior of the parameters. The 

results are averaged across each of the six classes of Solomon problems. See Kinney (2000) 

for a more thorough description of these problem sets. The LLH nomenclature identifies a 

Low and Mgh setting for each of the three parameters in order: default iterations, bad consecutive 

starts before quitting, and maximum places to insert. 
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Figure 21: Visual summary of parameter settings tests 

The line representing the solve time grows very quickly—almost a full order of 

magnitude—as the parameter setting levels increase. This suggests one should keep the 

parameters at the low settings. The small amount of variation in the solution qualities (the 

bars) provides no reason to increase the parameter settings. 
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These simple tests confirmed what experience in building the tabu search suggested: ■ 

that the low settings for the three parameters was sufficient to adequately search the solution 
i 
! 

space and arrive at good solutions. 

The Universal Vehicle Router, Sample Tabu Search, and Solomon Data Sets 

j 

i 

Since the UVR and sample tabu search is a general-purpose tool, it is not expected to 

be the fastest solver or come as close to the optimal solution as other more specific solvers. 

The question is whether or not the ease with which the UVR and sample tabu search could ! 
! 

be implemented outweighs its solution quality gap between the best known solutions and the 

i 
quick-turn solutions. j 

| 

Figure 22 shows the results of the runs (at parameter setting LLL) along with the     j 

best known solutions, as reported in the summary of best known solutions to the Solomon 

problems published by Kinney (2000). Values are rounded to the nearest whole number. 
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Figure 22: Comparing UVR with tabu search and best known Solomon solutions 

Although the distance data represents 56 discrete problems, the chart represents the 

data as continuous which is easier to read than 56 bars. The lighter area represents the best 

known solutions for each Solomon problem. The darker area on top represents the gap 

between the best known solutions and the solutions found by the UVR and sample tabu 

search solver. Table 5 shows all of the data. The sample tabu search and UVR, in addition to 

being easy to use, fare well on the standard problems. 

Table 5: Performance of UVR against best known solutions 

Number of Vehicles Distance Traveled Solve Time (sec) Source of 

UVR            Best UVR Best UVR Besf best known 

C101 10                10 852 827 69 1 

C102 10                10 960 827 18 1 

C103 10                10 923 826 188 2 

C104 10               10 913 823 263 2 

C105 10               10 860 827 80 2 

2 The solve times for the best known solutions are not readily available since they are not often published. 
Often the best known solutions are discovered after many runs taking many hours which makes the 
interpretation of solve time difficult to publish. 
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Number of Vehicles Distance Traveled Solve Time (sec) Source of 

UVR            Best UVR Best UVR          Besf best known 

C106 10      10 877 827 141 1 

a 07 10      10 894 827 113 1 

C108 10      10 853 827 151 1 

C109 10      10 854 827 240 2 

C201 3      3 591 592 83 3 

C202 3      3 676 592 179 3 

C203 3      3 683 591 204 4 

C204 3      3 656 591 259 3 

C205 3      3 588 589 141 3 

C206 3      3 633 588 172 3 

C207 3      3 601 588 159 4 

C208 3      3 629 588 163 4 

R101 20      18 1805 1608 207 1 

R102 19      17 1661 1434 251 1 

R103 14      13 1587 1207 272 5 

R104 11      9 1156 1007 243 6 

R105 14      14 1517 1377 228 4 

R106 13      12 1344 1252 213 4 

R107 12      10 1247 1105 228 6 

R108 10      9 1112 964 245 6 

R109 13      11 1334 1206 251 6 

R110 12      10 1248 1135 248 6 

R111 11      10 1242 1097 223 6 

R112 10      10 1148 954 232 4 

R201 4      4 1544 1254 197 7 

R202 4      3 1378 1214 254 8 

R203 3      3 1210 949 268 4 

R204 3      2 946 867 372 7 

R205 3      3 1208 999 234 7 

R206 3      3 1094 833 279 5 

R207 3      3 1078 815 326 4 

R208 2      2 989 739 407 4 

R209 3      3 1157 855 293 5 

R210 3      3 1232 963 258 7 

R211 3      2 980 924 364 8 

RC101 16      14 1802 1669 223 5 

RC102 14      12 1698 1555 269 8 

RC103 13      11 1502 1110 322 5 

RC104 13      10 1502 1135 327 6 

RC105 16      13 1706 1643 285 8 

RC106 13      11 1478 1448 355 8 

RC107 12      11 1434 1230 286 6 

RC108 11      10 1228 1140 261 8 

RC201 4       4 1810 1407 176 7 

RC202 4       4 1542 1153 312 7 
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Number o/" Vehicles Distance Traveled Solve Time (sec) Source of 

UVR Best UVR Best UVR          Best best known 

RC203 3 3 1484 1068 258 7 

RC204 3 3 1113 804 336 7 

RC205 4 4 1758 1302 228 7 

RC206 4 3 1421 1156 214 7 

RC207 4 3 1362 1075 239 7 

RC208 3 3 1099 834 356 4 

1. Desrochers er a/. 1992 
2. Kohl and Madsen 1997 
3. Potvin and Bengio 1996 
4. Rochat and Taillard 1995 

5. Thangiahefa/. 1994 
6. Shaw 1997 
7. Kilby et al. 1997 
8. Taillard et al. 1997 

Conclusion 

Tabu search parameters were examined against the Solomon standard problem set. 

To solve the Solomon problems required a simple interface to the UVR. By design no 

changes to the UVR were necessary to accommodate the Solomon application. The sample 

tabu search found good solutions to the problems 
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Chapter Five: Conclusion 

Specißc Contributions 

This thesis presents a proposed generic architecture for analytic support. This 

architectures uncouples the specifics of particular problems from the techniques and 

mechanisms used to obtain solutions to the class of problems. The layers proposed and 

defined in this architecture provide specific functionality used by other layers in the 

architecture. 

The architecture was built using routing problems as the focus. Each layer of the 

architecture was populated with components appropriate to that layer. A prototype 

application for routing UAVs was built on this architecture to meet the specific needs of the 

11* Reconnaissance Squadron. 

The heart of the architecture, the Universal Vehicle Router (UVR), builds upon an 

initial taxonomy for routing problems to provide a reusable component applicable to routing 

applications. Module reuse is demonstrated by building a Solomon test set solution 

application on top of the UVR. 

A general tabu search engine was used to provide the base functionality employed by 

the UVR and other research efforts. This general tabu search is enhanced by an adaptive 

tabu search providing quality answers to vehicle routing problems. 

The prototype AFIT Router application, made possible by the supporting 

architecture, has a simple-to-use yet data-rich interface. By maintaining the data and interface 
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to the UVR in the core AFIT Router kernel, the router frees developers to include general 

airframe routing without reaching further down into the architecture. 

Recommendations for Future Work 

Avenues for future work, both applied and theoretical, abound due to the modularity 

of the architecture. Applied research can focus on increasing realism in data representation 

such as maps, routing concerns such as weather and threats, or application interface issues 

such as tighter integration with the DEMPC. Already underway is follow-on work to define 

and include pertinent weather concerns in the core AFIT Router. Additionally, post-thesis 

discussions are underway to operationalize the AFIT Router by including it in both the 

DEMPC by Boeing and mapping software by a different contractor. 

Efforts in theoretical advances can focus on expanding the suite of general solvers 

for the routing architecture. Another extension is to define and populate similar architectures 

for other problem classes. 

A combined applied and theoretical effort could examine over-target routing tools 

where concerns specific to target-types and platform capabilities determine the specific flight 

path characteristics such as approach angle and standoff distance. Such tools can exploit 

lower levels of the routing architecture while defining their specific solver interfaces. This 

would provide the UAV operator a true end-to-end routing capability. 

55 



Bibliography 

Ackoff, Russell L. "The Future of Operational Research is Past," Journal ofthe Operational 
' Research Sodety, 30 (1979). 

Battiti, Roberto. "Reactive Search: Toward Self-Tuning Heuristics," Modern Heuristic Search 
Methods, Rayward-Smith (ed.), John Wiley and Sons Ltd: 61-83, (1996) 

Calhoun, Kevin. Tabu Search for Combat Aircraft Scheduling andRescheduling. MS thesis, 
AFIT/GOR/ENS/00M-6. School of Engineering and Management, Air Force 
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000. 

Carlton, William B. A Tabu Search to the General Vehicle Routing Problem. Ph.D. dissertation. 
University of Texas, Austin, TX, (1995). 

Carlton, William B. and J. Wesley Barnes. "A Note on Hashing Functions and Tabu Search 
Algorithms," European Journal of Operational Research, 95:237-239 (1996). 

Cullenbine, Christopher. Tabu Search Approach to the Weapons Assignment Model (WAM). MS 
thesis, AFIT/GOR/ENS/00M-8. School of Engineering and Management, Air 
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000. 

Desrochers, Martin, Jacques Desrosiers, and Marius Solomon. "A New Optimization 
Algorithm for the Vehicle Routing Problem with Time Windows," Operations 
Research, 40: 342-354 (March-April 1992). 

Flood, R. A Java Human Computer Interface for Displaying Maps in Support of a UA V Decision 
' Support Tool. MS thesis, AFIT/GCS/ENS/99M-01. School of Engineering, Air 

Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1999. 

Garcia, Bruno-Laurent, Jean-Yves Potvin, and Jean-Marc Rousseau. "A Parallel 
Implementation of the Tabu Search Heuristic for Vehicle Routing Problems with 
Time Window Constraints," Computers and Operations Research, 21: 1025-1033 (1994). 

Gendreau, Michel, Alain Hertz, and Gilbert Laporte. "A Tabu Search Heuristic for the 

56 



Vehicle Routing Problem," Management Science, 40: 1276-1289 (October 1994). 

Gendreau, Michel, Alain Hertz, and Gilbert Laporte. "New Insertion and Postoptimization 
Procedures for the Traveling Salesman Problem," Operations Research, Vo/40, No. 6: 
1086-1094(1992). 

Gendreau, Michel, Gilbert Laporte, and Rene Seguin. "A Tabu Search Heuristic for the 
Vehicle Routing Problem with Stochastic Demands and Customers," Operations 
Research, 44: 469-4T7 (May-June 1996). 

Gendreau, Michel, Gilbert Laporte, Christophe Musaraganyi, and Eric D. Taillard. "A Tabu 
Search Heuristic for the Heterogeneous Fleet Vehicle Routing Problem," Computers 
and Operations Research, 26:1153-1173 (1999). 

Glove, Fred. "Future Paths for Integer Programming and Links to Artificial Intelligence," 
Computers and Operations Research, 13: 533-549 (1986). 

Golden, Bruce L., Gilbert Laporte, and Eric D. Taillard. "An Adaptive Memory Heuristic 
for a Class of Vehicle Routing Problems with MinMax Objective," Computers and 
Operations Research, Vol 24, No. 5:445-452 (1997). 

Hall, Shane. A Group Theoretic Tabu Search Approach to the Traveling Salesman Problem. MS Thesis, 
AFIT/GOR/ENS/00M-14. School of Engineering and Management, Air Force 
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000. 

Kilby P., P. Prosser, and P. Shaw. "Guided Local Search for the Vehicle Routing Problem," 
In Proceedings of the 2^ International Conference on Meta-heuristics, (1997). 

Kinney, Gary. A Hybrid Jump Search and Tabu Search Metaheuristicfor the Unmanned Aerial Vehicle 
'(UAV) Routing Problem. MS thesis, AFIT/GOA/ENS/00M-5. School of Engineering 
and Management, Ar Force Institute of Technology (AU), Wright-Patterson AFB 
OH, March 2000. 

Kohl, N. and O.B.G. Madsen. "An Optimization Algorithm for the Vehicle Routing 
Problem with Time Windows Based on Lagrangian Relaxation," Operations Research, 
45(3): 395 (1997). 

57 



Laporte, Gilbert, Yves Nobert, and Serge Taillefer. "Solving a Family of Multi-Depot 
Vehicle Routing and Location-Routing Problems," Transportation Science: Vo/22, No. 
3: 161-172 (1988). 

Laporte, Gilbert. "The Vehicle Routing Problem: An Overview of Exact and Approximate 
Algorithms,"European Journalof'Operational'Research, 59:345-358 (1992). 

O'Rourke, K. Dynamic Unmanned Aerial Vehicle Routing with a Java-encoded Reactive Tabu Search 
Metaheuristic. MS thesis, AFIT/GOA/ENS/99M-06. School of Engineering, Air 
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1999. 

Potvin, J.-Y. and S. Bengio. "The Vehicle Routing Problem with Time Windows—Part II: 
' Genetic Search," ORSA Journal on Computing, 8(2): 165 (1996). 

Renaud, Jacques, Gilbert Laporte, and Fayez F. Boctor. "A Tabu Search Heuristic for the 
Multi-Depot Vehicle Routing Problem," Computers and Operations Research, 23: 229-235 
(1996). 

Rochat, Y. and E. Taillard. "Probabilistic Diversification and Intensification in Local Search 
'for Vehicle Routing," Journal of'Heuristics, 1(1): 147-167 (1995). 

Ryan, Joel L. Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial Vehicle Simulations. 
MS thesis, AFIT/GOR/ENS/98M. School of Engineering, Air Force Institute of 
Technology (AU), Wright-Patterson AFB OH, February 1998. 

Shaw, P. "A New Local Search Algorithm Providing High Quality Solutions to Vehicle 
Routing Problems," APES Group, Dept of Computer Science, University of 
Strathclyde, Glasgow, Scotland, UK. (June 1997). 

Taillard, E., P. Badeau, M. Gendreau, F. Guertain, and J.-Y. Potvin. "A Tabu Search 
Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation 
Science,2>2{2){\991). 

Talbi, E.G., Z. Hafidi, and J-M. Geib. "A Parallel Adaptive Tabu Search," Parallel Computing, 
24: 2003-2019 (1998). 

58 



Thangiah, S.R., I.H. Osman, and T. Sun. Hybrid Genetic Algorithm, Simulated Annealing and Tabu 
Search Methods for Vehicle Routing Problems with Time Windows. Technical Report 
UKC/OR94/4, Institute of Mathematics and Statistics, University of Kent, 
Canterbury, UK. (1994). 

Toulouse, Michel, Teodor G. Crainic, and Michel Gendreau. "Communication Issues in 
Designing Cooperative Multi-Thread Parallel Searches," International Conference. 
Boston: Kluwer Academic Press, 1996. 

Tsubakitani, Shigeru and James R. Evans. "An Empirical Study of a New Metaheuristic for 
the Traveling Salesman Problem," European ]ournal of Operational Research, 104:113- 
128 (1998). 

Woodruff, David L. and Eitan Zemel. "Hashing Vectors for Tabu Search," Annals of 
Operations Research, 41:123-137 (1993). 

59 



Additional References 

Armentano, Viniecius A. and Debora P. Ronconi. "Tabu Search for Total Tardiness 
Minimization in Flowshop Scheduling Problems," Computers and Operations Research, 
26: 219-235 (1999). 

Barbarosoglu, Gulay and Demet Ozgur. "A Tabu Search Algorithm for the Vehicle Routing 
Problem," Computers and Operations Research, 26: 255-270 (1999). 

Crainic, Teodor Gabriel and Michel Gendreau. "Towards an Evolutionary Method— 
Cooperating Multi-Thread Parallel Tabu Search Hybrid," Meta-Heuristics: Advances and 
Trends in LocafSearch Paradigms for Optimisation. Boston: Kluwer Academic Publishers, 
1997. 

Cullenbine, Christopher. Tabu Search Approach to the Weapons Assignment Model (WAM). MS 
thesis, AFIT/GOR/ENS/00M-8. School of Engineering and Management, Air 
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2000. 

Glover, Fred and Manuel Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997. 

Glover, Fred. "Heuristic for Integer Programming Using Surrogate Constraints," Decision 
'Sciences, 8: 156-166 (1977). 

Hall, Shane. A Group Theoretic Tabu Search Approach to the Traveling Salesman Problem. MS Thesis, 
AFIT/GOR/ENS/00M-14. School of Engineering and Management, Air Force 
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000. 

Liaw, Ching-Fang. "A Tabu Search Algorithm for the Open Shop Scheduling Problem," 
Computers and Operations Research, 26: 109-126 (1999). 

Lokketangen, Arne and Fred Glover. "Solving Zero-One Mixed Integer Programming 
Problems Using Tabu Search," European Journal of Operational Research, 106: 624-658 
(1998). 

60 



Nowicki, Eugeniusz and Czeslaw Smutnicki. "A Fast Taboo Search Algorithm for the Job 
Shop Problem," Management Science, 42: 797-813 (June 1996). 

Toulouse, Michel, Teodor Gabriel Crainic, Brunilde Sanso, and K. Thulasiraman. "Self- 
Organization in Cooperative Tabu Search Algorithms," IEEE International Conference 
on Systems, Man, and Cybernetics, 3: 2379-2384 (1998). 

Tsubakitani, Shigeru, and James R. Evans. "Optimizing Tabu List Size for the Traveling 
Salesman Problem," Computers and Operations Research, Vol25, No. 2:91-97 (1998). 

61 


